DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination
نویسندگان
چکیده
The assembly of nanomaterials using DNA can produce complex nanostructures, but the biological applications of these structures remain unexplored. Here, we describe the use of DNA to control the biological delivery and elimination of inorganic nanoparticles by organizing them into colloidal superstructures. The individual nanoparticles serve as building blocks, whose size, surface chemistry and assembly architecture dictate the overall superstructure design. These superstructures interact with cells and tissues as a function of their design, but subsequently degrade into building blocks that can escape biological sequestration. We demonstrate that this strategy reduces nanoparticle retention by macrophages and improves their in vivo tumour accumulation and whole-body elimination. Superstructures can be further functionalized to carry and protect imaging or therapeutic agents against enzymatic degradation. These results suggest a different strategy to engineer nanostructure interactions with biological systems and highlight new directions in the design of biodegradable and multifunctional nanomedicine.
منابع مشابه
Nanoparticle self-assembly on a DNA-scaffold written by single-molecule cut-and-paste.
Self-assembly guided by molecular recognition has in the past been employed to assemble nanoparticle superstructures like hypercrystals or nanoparticle molecules. An alternative approach, the direct molecule-by-molecule assembly of nanoscale superstructures, was demonstrated recently. Here we present a hybrid approach where we first assemble a pattern of binding sites one-by-one at a surface an...
متن کاملMathematical Analysis of Drug Release for Gastrointestinal Targeted Delivery Using β-Lactoglobulin Nanoparticle
To answer challenge of targeted and controlled drug release in oral delivery various materials were studied by different methods. In the present paper, controlled metal based drug (Pd(II) complex) release manner of β‑Lactoglobulin (β-LG) nanoparticles was investigated using mathematical drug release model in order to design and production of a new oral drug delivery system for gastrointestinal ...
متن کاملPeptide-directed synthesis and assembly of hollow spherical CoPt nanoparticle superstructures.
Controlling the directed assembly of nanoparticles into welldefined nanoparticle superstructures is a significant challenge, and our goal is to develop a general methodology to address this issue. The success and broad applicability of a particular nanoparticle-assembly methodology should be assessed according to the following important criteria: 1) diverse structural scope, 2) ability to tune ...
متن کاملAssembly of nanorods into designer superstructures: the role of templating, capillary forces, adhesion, and polymer hydration.
The assembly mechanism by which hundreds of thousands of two-segment gold-polypyrrole nanorods are assembled into kinetically controlled shape-directed superstructures is examined to predict the range of nanoparticle sizes and materials that can be utilized in their formation. Four processes are responsible for assembly: templating, capillary force assembly, adhesion, and polymer hydration. It ...
متن کاملControlling DNA-nanoparticle serum interactions.
Understanding the interaction of molecularly assembled nanoparticles with physiological fluids is critical to their use for in vivo delivery of drugs and contrast agents. Here, we systematically investigated the factors and mechanisms that govern the degradation of DNA on the nanoparticle surface in serum. We discovered that a higher DNA density, shorter oligonucleotides, and thicker PEG layer ...
متن کامل